码观 | 谁是AIGC的“大玩家”?
在刚刚结束的这一年,以ChatGPT、Midjourney为代表的颠覆性AI应用,引发了AIGC的全球共振。
源码认为,这次生成式AI的浪潮背后可能会隐藏着巨大的机会。与过往深度学习浪潮不同,由于其更加庞大的模型规模,将参与竞争的门槛明显提高,小公司可能更倾向于直接适用服务而非搭建自己的模型,AI因此有机会成为一种平台型服务。同时,随着AI能力的进一步提升,AI应用也愈发靠近具体的商业场景,流畅自然的机器人对话、瑰丽超现实的图像生成,让普通个体也成为这场技术狂欢的一部分。
需要注意的是,与大多数技术一样,生成式AI在技术上的差异并不明显,但我们对其应用和商业前景保持希望,仍有可能出现十分有价值的应用场景。模型规模的扩大让传统的规模效应更加明显;同时,一个合适的产品形态和商业模式,可能催生额外的壁垒,比如足够的闭源数据。生成式AI通过优秀产品经理的打磨,亦可能将带来全新的体验,形成牢固的用户生态。
生成式AI作为一个可能有很高上限的底层技术变革,是一个十分值得认真关注的领域。
a16z投资人日前发布网站文章,从应用到模型、再到行业基础设施,全面总结和探讨了生成式AI各环节玩家面临的情况,并提出了非常有趣的洞察:训练了生成式AI并且将它们部署到实际app中的公司,创造了最大价值,但并没有在产业链中获得最大收益。
作为一项振奋人心的新技术,生成式AI产业链中的价值将如何演化?新的护城河是否会出现?谁才是这个领域的最大赢家?
源码编译此文与读者共飨,部分细节有表述调整,希望给您带来更好的阅读体验,启发更深刻的洞察思考。
01
提纲挈领的技术架构:基建、模型及应用
【来源:Matt B., Guido A., & Martin Casado (2023, January 23). Who owns the Generative AI platform? Andreessen Horowitz. Retrieved January 30, 2023, from https://a16z.com/2023/01/19/who-owns-the-generative-ai-platform/ 】
通过“应用-模型-基建”的分析框架,目前整个生成式AI可以分为3层:
• 应用层,通常基于自有的模型或依赖第三方的API,将生成式AI模型集成到面向用户的产品。
• 模型层,通过专用API或开源检查点(需要一个托管方案),赋能AI产品。
• 基础设施层,为生成式AI模型执行训练或调用请求,比如云平台和硬件生产商。
应用:可开启规模化之路,
但用户留存和产品差异化依然在挣扎
垂直整合(“模型+应用”)。将AI模型作为一种服务来消费,允许应用开发者在小团队中快速迭代,并随着技术的进步替换模型提供商。也有开发者认为产品就是模型,从头开始训练模型是建立壁垒的唯一方法——即通过不断地对专有产品数据进行再训练,但这是以更高的资本要求和更不灵活的产品团队为代价的。 构建功能vs.做应用。生成式AI产品可以有许多不同的形式:桌面应用、移动应用、Figma/Photoshop插件、Chrome插件,甚至Discord机器人。在用户已经习惯的场景集成AI产品很容易,因为UI通常只是一个文本框。那么其中哪些会成为独立公司,哪些会被巨头收购呢? 管理技术成熟度曲线。目前还不清楚当前这批生成式AI产品的用户流失是注定的,还是由于行业处于早期导致的“假象”,或者,用户对生成式AI的兴趣是否会随着技术成熟度曲线的回落而下降。这些问题对应用公司具有重要影响:包括何时加速融资、如何积极投入获客、优先考虑哪些用户、何时确认PMF等等。
模型:模型提供商虽然发明了生成式AI,
但仍未达到较大的商业规模
同质化。人们普遍认为,随着时间的推移,人工智能模型的性能将趋于一致。但是和应用开发者交流后,我们发现差异化会持续存在。图片和文字生产领域都有强大的头部玩家,只是他们的优势不是基于独特的模型架构,而是基于高资本投入、专用的产品互动数据和稀缺的AI人才。这会是长期优势吗?
被替代的风险。依靠模型提供商是应用公司起步和发展业务的有效途径。但是,一旦达到一定规模,应用公司就有动力建立、托管自己的模型。许多模式提供商的客户分布高度集中,少数应用带来了大部分收入。如果这些客户转向内部AI开发时,会发生什么?
钱重要吗?生成式AI的前景非常大,但也可能非常有害,以至于许多模型提供商已经成为公益公司(B corps),或者发行有限投资回报的股权(译者注:如微软投资OpenAI的案例),或者用其他方式明确地将公共利益纳入其使命。这并没有妨碍他们的融资。这里有个问题是,模型提供商是否真的想要盈利、以及他们是否应该盈利。
基建:基建服务商无处不在,并收割成果
如何防止跨云迁移。无论你在哪里租英伟达的 GPU都是一样的,大多数AI工作负载是无状态的,也就是说,模型推理不需要附加额外的数据和存储(除了模型权重本身)。这意味着AI计算任务可能比传统应用程序计算任务更容易跨云迁移。在这种情况下,云服务商如何提高粘性,防止客户转向最便宜的选择? 如何在芯片短缺结束后生存。云服务商和英伟达本身的高定价,主要是由性能最良好但供应又稀缺的GPU支撑的。一家供应商告诉我们,A100自上市以来,其指导价一直在涨,这对计算硬件来说是极其少见的。当这种供应限制最终通过增加生产、采用新的硬件平台而弱化时,将对云服务商产生什么影响? 挑战者们的云能成功吗?我们坚信,垂直云能通过提供更专业的服务,从三巨头手中夺取市场份额。到目前为止,在人工智能领域,挑战者们通过适度的技术差异化和英伟达的支持,已经获得市场吸引力。对于英伟达而言,现有的云服务商既是最大的客户,也是新兴的竞争对手。长期的问题是,这是否足以克服三巨头的规模优势?
05
所以,我们将从哪里创造价值?
我们还不知道。但根据目前所掌握的生成式AI的早期数据,结合早期AI/ML公司的经验,我们的直觉如下:
现在,在生成式AI领域还没有出现任何系统性的护城河。应用产品由于使用相似的模型而缺乏差异性;模型在类似的数据集和类似的架构上训练,长期差异不明确;云服务商运行相同的GPU,也缺乏深度技术差异;甚至硬件公司也在同一家晶圆厂生产它们的芯片。
当然,还有标准的护城河:规模护城河(“我有/能比你筹集到更多的资金!”)、供应链护城河(“我有GPU,你没有!”)、生态系统护城河(“每个人都已经在使用我的软件!”)、算法护城河(“我们比你更聪明!”)、分销护城河(“我有更强的销售团队和更多的客户!”)和数据护城河(“我在互联网上爬的数据比你多!”)。但这些护城河都不可能长期持续。现在判断更强更直接的网络效应能否会在任何一层玩家占据上风都还为时过早。
根据现有的数据,我们还不清楚生成式AI领域是否会出现长期的赢家通吃的情况。
虽然这很奇怪,但这是个好消息。这个市场的潜在规模很难把握——它介于所有软件和所有人的努力之间,所以我们预计会有很多、很多的参与者,在各个层面上进行良性竞争,最终是市场和用户决定了最佳的产业结构。如果终端产品的主要区别是人工智能本身,那么垂直类产品可能会胜出。而如果人工智能是一个更大的、长尾的功能集的一部分,那么平台型产品将更有优势。当然,随着时间的推移,我们会看到更多传统护城河的建立,甚至是新型护城河的出现。
无论如何,可以肯定的是生成式AI改变了游戏规则。所有人都在实时学习这些规则,大量价值将被释放,科技领域也将因此变得非常不同。让我们静待花开。
文中提及的部分公司与模型介绍:
Stable Diffusion
Stable Diffusion是2022年发布的深度学习文生图模型。它主要用于根据文本的描述产生详细图像。由初创公司StabilityAI与慕尼黑大学的CompVis团体合作开发。
ChatGPT
ChatGPT是由OpenAI开发的一个人工智能聊天机器人程序,于2022年11月推出。该程序使用基于GPT-3.5架构的大型语言模型并通过强化学习进行训练。
ChatGPT得到的关注空前。上线仅5天的ChatGPT用户数量突破100万。
Hugging Face
Hugging Face是一家美国公司,AI/ML社区和平台,创立于2016年,开发使用机器学习构建应用程序的工具。早期通过 Transformers 模型库和高质量社区受到关注。用户可以在 Hugging Face 上托管和共享 ML 模型、数据集,也可以构建、训练和部署模型,即模型托管平台。
OpenAI
OpenAI 是美国一个人工智能研究实验室,目的是促进和发展友好的AI,使人类整体受益。OpenAI由伊隆·马斯克以及山姆·柯曼成立于2015年底,总部位于加利福尼亚州旧金山。目前最前沿的文本生成模型GPT-3系列、文生图模型DALLE2都来自于OPEN AI。
2019年,在训练模型的高成本压力下,OpenAI划分出有利润上限的盈利性组织 OpenAI LP。紧随其后,微软宣布为OpenAI注资10亿美元,并获得了将OpenAI 部分AI技术商业化、赋能产品的许可。
Stability
在2020年,Emad Mostaque创办了Stability AI,希望成为一家和Open AI一样非盈利模式的、同时更加开放的机构。22年8月,Stability推出首个免费的开源产品模型Stable Diffusion。
最初,Stability AI以1亿美元估值完成1000万美元融资。22年10月,Stability AI宣布获得来自Coatue和光速的1.01亿美元投资,且估值将达10亿美元。
本文编译自a16z:Who Owns the Generative AI Platform? | Andreessen Horowitz
如有侵权,请联系我们处理
如果您对AIGC相关话题感兴趣,欢迎留言与我们交流